If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-0.01Y^2+9Y-1296
We move all terms to the left:
-(-0.01Y^2+9Y-1296)=0
We get rid of parentheses
0.01Y^2-9Y+1296=0
a = 0.01; b = -9; c = +1296;
Δ = b2-4ac
Δ = -92-4·0.01·1296
Δ = 29.16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{29.16}}{2*0.01}=\frac{9-\sqrt{29.16}}{0.02} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{29.16}}{2*0.01}=\frac{9+\sqrt{29.16}}{0.02} $
| y/6+2=11 | | Y=0.9x+500 | | 4(1.50)+3x=24 | | 3x-6-6=7x-x-5 | | -32=3+(-7z) | | 22y=14y | | (4x-2/5)+(x+9/5)=2/5 | | x-(15/100)=1995 | | -32=3+-7z | | –5(3x-2)=40 | | 7(r+1)=19-5r | | -3a+8+7a=8a-2a | | 3y+62/3=13 | | 22(b+15)=968 | | 200-15x=180-10x | | –6+4g=5g | | 27(j-951)=999 | | -31-4x=-5(2+5x) | | 1200000=((1-((1+x/12)^-180))/x/12)*7495,105+24000 | | 200-15x=180-19x | | Y=462.68x+660.37 | | 3(2p-7)=3p+3p+2-9 | | 20-2x=-5(3x+5)+4x | | 4a+25=6a-75 | | 23(z+31)=851 | | 2k-(-43)=97 | | 0.15b+1.2=4.8 | | -7-7z=-8z | | -6x+2-x-5=80 | | a+3/5=2 | | 10x+(6x-3)=180 | | 2(2a+4)-6=5a+6 |